Wednesday, April 3, 2019

Detecting Spam Zombies by Monitoring Outgoing Messages

Detecting junk e-mail Zombies by Monitoring Out outlet MessagesAbstractCompromised railcars atomic number 18 one of the happen upon security threats on the Internet. They are often apply to launch various security attacks such as e-mailming and spreading malware 15. Given that junk e-mailming provides a anchor econo(prenominal)ic incentive for attackers to recruit a large number of compromised machines, we charge on the keep an eye onion of the compromised machines in a ne twainrk that are twisting in the spamming activities, commonly known as spam zombies 12.IntroductionAs the use of internet increased in the era of science and engineering the problem of spam has also been increased. There are multiple ship canal in which spam takes place we would like to discuss the spam that is passed through with(predicate) and through messages specifically through e-mails. When these spam mails are passed into the system these makes the system compromised and the entropy in the net micturate can be stolen or lost these cast of spamming is more concern to the industry or any kind of judicature where privacy is the key aspect in this competitive world. email e-mail can be delineate as Simple Pointless scratchy Messages. According to US Federal Trade Commission (FTC) spam is defined as, any commercial electronic mail message sent, often in bulk, to a consumer without the consumers prior request or consent 1. A recent study conducted by SMX an email security provider the pctage of spam is about 80% approx. And the average size of these spam messages in 16 Kb 2. The results above indicate the seriousness of the problem. There are several(prenominal) techniques proposed and employed in filtering these spam messages such as Machine nurture techniques like Neural net whole kit(NN), Support Vector Machines(SVM), Naive Bayes Classifier. both(prenominal) techniques are based on probability and others on architectural. According to indigo plant Kumar Gupta on wi th two others in his explore paper stated that nurture SVM is easy compared to NN because NN takes more time to train than SVM and NN will not aim binary classification mechanism where has SVM does that technique to verify the legitimate of the email 2. Rafiqul Islam in his search proposed an architecture for spam filtering based on run on vector machine 3. T. Hamsapriya along with three others in 2014 proposed Filtered Bayesian breeding technique to increase the performance of the nave Bayes classifier. These all techniques shake up contri yeted in pull wiresling spam to very much extent 4. email Zombies A machine is said to be compromised if it is successfully exploited by the attacker. These machines are used to launch various attacks in the network. These compromised machines are called zombies. The machine is do compromised when an attacker sends a spam mail to the targeted system and made a zombie 5. e-mail in MessagesTodays communication mostly disaster through mess ages that are sent electronically through email or text messages in mobile. Our main concentration is confined to messages that are going out through a network and coming into the network that are emails. Body message based spam contracting is employed in larger servers but in a research conducted by Shukor bin Abdul Razak in 2013 showed that the feature can be manipulated and has several issues such as Manipulation of lexical patterns, efficiency, future trends. So he proposed an email mind technique that has a potential in filtering spam efficiently 6. In 2015 Wazir Zada Khan along with three others stated that the detection criterion for mesh spam is substantially dissimilar, so, the email spam coming from botnets cannot be handled by the web spam detection techniques. Then they proposed architecture for email spam botnet detection 7.Algorithm station detection algorithm is used to detect spammers. Before proposing have sex detection techniques there are few works which hap pened in detective work spam zombies. S. Yuvaraj in 2013 came up with a quaternary mental faculty system which consists of compose mail process, Filter spam detect, IP capture, Extraction of payloads and payload disassembly and this algorithm is called has semantic aware statistical algorithm (SAS) 8. But this algorithm fails to catch spammers but detects spam zombies. The research also proposed algorithms in the field of botnet which is usually called a group of computers alter with malware and controlled without the notice of administrator. To control these botnets issues Guofei Gu from Georgia institute of technology came up with bot hunter based on correlation between inbound and outward-bound communication. This system also uses intrusion detection system(IDS) to find out the compromised machines in the network 9. Later in 2008 again Guofei Gu along with scram Lee proposed another technique called botsniffer in which he extended his research in detecting compromised servers depending on the behavioral similarity in a single group of connected computers 10. After all these works with different techniques people came up with standard algorithm called SPOT applied in detecting spam zombies which functions by monitoring outgoing messages in the network. Z. Duzan in 2009 proposed an algorithm utilise Sequential Probability Ratio Test(SPRT) depending on the numerical value of the SPRT the email is as spam or not spam 11. But he ignored the impact of dynamic IP goal on the data which is considered for analysis. His research is as limitations since the algorithm is based on probability analysis and the messages arrived assumed to independent of each other but this may not be the practical scenario. Spam filters are used to detect the spam emails but these filters are not 100 percent efficient. Later in 2012 Pen cheng along with Z.Duzan modified his algorithm they introduced two more end points called count threshold and percentage threshold to predict the impact of dynamic IP address12. In continuation to the work of Z. Duzan, Ar. Arunachalam along with his two students in 2013 added two more modules and applied Z. Durzan techniques in calculating the impact of dynamic IP address to entire system by adding user interface module and spam zombie detection module where he has reset the values of the captured spam emails continuously 13. Similar work has been done by R.Vasanth Kumar and K. Ravi Kumar in 2013 they modified the existing algorithm using the IP address of the sending machine and introducing a new term called message index14. Parvathi Bhadre and Deepthi Gothawal in 2014 proposed a new method using SPOT detection algorithm consisting of four modules namely virus checks, Spam Checks and Spam filter, blocking of spammers using SPOT and Recovery 15. But their research does not talk anything about the impact spam mails generated using dynamic IP address. In 2015 Anupsingh Thakur and Prof.Praful Sambhare conducted a survey on spa mming and detection control through various methods like SVM, Domain key integrated mail system(DKIMS) and SPOT detection system defined how SPOT is accurate in detecting Spams 16.ConclusionBrief review on spam, spam zombies, spam in messages, algorithm used and the previous works done are explained. We in our project intending to come up with improved algorithm that could effectively tackle the limitations of the previous works.ReferencesD. C. Washington, Unsolicited commercial e-mail before the SUBCOMMITTEE ON TELECOMMUNICATIONS, clientele AND CONSUMER PROTECTION of the COMMITTEE ON COMMERCE UNITED STATES HOUSE OF REPRESENTATIVES, 2013. Online. unattached https//www.ftc.gov/sites/default/files/documents/public_statements/prepared-statement-federal-trade-commission-spamming/spamtestimony1103.pdf. Accessed Mar. 3, 2017.A. G. Kakade, P. K. Kharat, and Anil Kumar Gupta, Spam filtering techniques and MapReduce with SVM A study, 2014 Asia-Pacific convention on calculating machine A ided System engine room (APCASE), vol. 14666087, pp. 59-64, Feb. 2014.R. I. M, W. Zhou, and M. U. Choudhury, Dynamic Feature Selection for Spam Filtering Using Support Vector Machine, 6th IEEE/ACIS world-wide Conference on Computer and Information Science (ICIS 2007), vol. 9864217, Jul. 2007.H. T, L. S. P, K. R. D, and R. C. M, SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES, ICTACT Journal on Communication Technology, vol. 02, no. 04, pp. 457-462, Dec. 2011.A. Rajagopal and A. P. P, SPOT- e-mail Spam zombie detection system, International Journal of Innovative Research in Computer and Communication Engineering, vol. 2, no. 1, pp. 664-669, Jan. 2012. Online. Available https//www.rroij.com/open-access/spot-email-spam-zombie-detection-system.php?aid=48276. Accessed Mar. 3, 2017.S. Bin Abd Razak and A. F. Bin Mohamad, Identification of spam email based on information from email header, 2013 13th International Conference on Intellient Systems Design and Applications, pp. 347-353, Oct. 2014.W. Z. Khan, M. K. Khan, F. T. Bin Muhaya, M. Y. Aalsalem, and H.-C. Chao, A comprehensive study of netmail Spam Botnet detection, IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2271-2295, Jul. 2015.Y. M. S. S., An effective defense against compromised machines by sas squirm detection, International Journal of Computer Science and Management Research, pp. 33-37, 2013.G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, BotHunter Detecting Malware infection Through IDS-Driven Dialog Correlation, 16th USENIX Security Symposium, pp. 167-182, 2007.G. Gu, W. Lee, and J. Zhang, Botsniffer Detecting botnet command and control channels in network traffic, Proceedings of The 15th Annual vane and Distributed System Security Symposium (NDSS 2008), Feb. 2008.Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson, and J. Barker, Detecting Spam Zombies by Monitoring outgoing Messages, IEEE INFOCOM 2009, 2009.Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson, and J. M. Barker, Detecting Spam zombies by monitoring outgoing messages, IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 2, pp. 198-210, Mar. 2012.A. Ar, V. V, and Y. V, Detecting Spam Zombies Using soil Tool by Monitoring Outgoing Messages, International Journal of go Research in Computer Science and Software Engineering, vol. 3, no. 4, pp. 400-402, Apr. 2013.V. kumar R and R. K. K, Recognizing Spam Zombies by Monitoring leaving Messages, International Journal of Engineering and Computer Science, vol. 2, no. 11, pp. 3213-3216, Nov. 2013.P. Bhadre and D. Gothawal, detective work and blocking of spammers using SPOT detection algorithm, 2014 First International Conference on Networks Soft Computing (ICNSC2014), pp. 97-101, Aug. 2014.A. Thakur and P. Sambhare, Spamming and Detection Control A Survey, INTERNATIONAL JOURNAL FOR RESEARCH IN emerge SCIENCE AND TECHNOLOGY, vol. 2, no. 5, pp. 155-157, May 2015.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.